Mira 协议如何透过去中心化共识机制,让 AI 更诚实?
作者:Messari
编译:Elponcho,链新闻
在生成式 AI 蓬勃发展的今天,我们仍难以解决一个根本问题:AI 有时会一本正经地胡说八道。这种现象在业界被称为“幻觉”(hallucination)。而 Mira,一个专为 AI 输出验证而设计的去中心化协议,正试图透过多模型共识机制与加密审计,为 AI 增加“事实可信度”。以下,我们来看 Mira 是如何运作的、为什么它比传统做法更有效,以及它目前在真实应用中的成果。
本报导内容根据 Messari 发布的研究报告整理撰写。
去中心化的事实验证协议:Mira 的基本运作原理
Mira 并不是一个 AI 模型,而是一个嵌入式的验证层。当一个 AI 模型产出回应后(例如 chatbot 回答、摘要、自动化报告等),Mira 会将输出拆解成一连串独立的事实主张。这些主张会被送往其分散式验证网路,每个节点(即验证者)各自运行不同架构的 AI 模型,来评估这些主张是否为真。
每个节点都会针对主张给出“正确”、“错误”或“不确定”的判断,最后系统依据多数共识来做出总体决策。若大多数模型认可某个主张为真,该主张就会被核准;否则就会被标注、驳回,或提示警告。
这个过程完全透明、可审计。每一笔验证都会产生一个加密证书,标明验证过程中参与的模型、投票结果、时间戳记等,供第三方查验。
为什么 AI 需要像 Mira 这样的验证系统?
生成式 AI 模型(如 GPT、Claude)并不是决定论式的工具,它们是依照机率预测下一个字元,并不具备内建的“事实感知”。这样的设计让它们可以写诗、讲笑话,但也意味着:它们可能一本正经地制造虚假资讯。
Mira 提出的验证机制,正是要解决 AI 目前的四大核心问题:
-
幻觉泛滥:AI 编造政策、虚构历史事件、乱引文献的案例层出不穷。
-
黑箱运作:使用者不知道 AI 的答案从何而来,无法追溯。
-
非一致性输出:同样的问题,AI 可能给出不同答案。
-
中心化控制:目前大多数 AI 模型由少数几家公司垄断,用户无法查证其逻辑或争取第二意见。
传统验证方法的局限
目前的替代方案,例如人类审查(Human-in-the-loop)、规则式过滤器、模型自我校验等,都各有不足:
-
人工审查难以规模化,速度慢且成本高。
-
规则式过滤局限于预定场景,对创造性错误无能为力。
-
模型自审效果差,AI 经常对错误答案过度自信。
-
集中式 Ensemble虽然能交叉检查,但缺乏模型多样性,容易形成“集体盲点”。
Mira 的创新机制:结合共识机制与 AI 分工
Mira 的关键创新是将区块链共识概念引入 AI 验证。每一笔 AI 输出,在经过 Mira 后,会变成多个独立的事实陈述,由各式 AI 模型进行“投票”。只有在超过一定比例模型达成一致时,该内容才会被视为可信。
Mira 核心设计优势包括:
-
模型多样性:来自不同架构与数据背景的模型,降低集体偏误。
-
错误容忍:即使部分节点出错,也不会影响整体结果。
-
全链透明:验证纪录上链,可供审计。
-
可扩展性强:每日可验证超过 30 亿 tokens(约等于数百万段文字)。
-
无需人为干预:自动化进行,不需人工验证。
去中心化基础建设:节点与计算资源由谁提供?
Mira 的验证节点由全球去中心化计算贡献者提供。这些贡献者被称为 Node Delegators (节点委任者),他们不直接操作节点,而是将 GPU 运算资源出租给经过认证的节点营运者。这种“计算即服务”模式大幅扩展了 Mira 的可处理规模。
主要合作节点供应商包括:
-
Io.Net:提供 DePIN 架构 GPU 计算网。
-
Aethir:专注于 AI 与游戏的分散式云端 GPU。
-
Hyperbolic、Exabits、Spheron:多家区块链计算平台,也为 Mira 节点提供基础设施。
节点参与者需通过一项 KYC 视讯验证程序,以确保网路唯一性与安全性。
Mira 验证让 AI 正确率提升至 96%
根据 Messari 报告中的 Mira 团队数据,透过其验证层过滤后,大型语言模型的事实正确率从 70% 提升至 96%。在教育、金融、客服等实际场景中,幻觉内容的出现频率下降了 90%。重要的是,这些改进完全不需重新训练 AI 模型,仅透过“过滤”就能达成。
目前 Mira 已整合至多个应用平台中,包括:
-
教育工具
-
金融分析产品
-
AI chatbot
-
第三方 Verified Generate API 服务
整个 Mira 生态系涵盖超过 450 万名用户,每日活跃使用者达 50 万人以上。虽多数人未直接接触 Mira,但他们的 AI 回应,早已悄悄经过其背后的验证机制。
Mira 打造 AI 的可信任基础层
在 AI 产业日益追求规模与效率的同时,Mira 提供了一个新方向:不靠单一 AI 决定答案,而是靠一群独立模型来“投票定真”。这样的架构不仅让输出结果更可信,也建立起一种“可验证的信任机制”,并且具备高度可扩展性。
随著用户规模扩大与第三方审核渐趋普及,Mira 有潜力成为 AI 生态中不可或缺的基础设施。对于任何希望其 AI 能在真实世界应用中站得住脚的开发者与企业,Mira 所代表的“分散式验证层”或许正是关键拼图之一。
(责任编辑:基金数据)
-
基于此,我甚至在想,勤俭节约爱存钱真的是中华民族的特有标签吗?也许只是消费行为之于经济条件有一定滞后性罢了。...[详细]
-
每周编辑精选:加密世界的深度洞察与趋势分析(0517-0523)
2012年4月,俏江南又谋划在香港上市,为了筹集资金甚至把价值3亿的兰会所卖掉,甚至张兰都不惜辞去政协委员一职,把国籍更改为加勒比岛国,但这样还是没能在香港上市。...[详细]
-
网易科技根据现场的对谈,整理出了一些keso的观点,enjoy: 1、当公司规模足够大之后,你不能自己想做什么就做什么,今天你越来越需要依赖世界,去和整个世界配合。...[详细]
-
同意21.5元/股的回购方案,浮亏就变成实实在在的亏损了,这怎么能行呢? 小股东不愿意被回购没关系,阿拉丁大股东可以自己跑。...[详细]
-
Avalanche Game 计划进军 Steam 平台,NFT 销量持续升温
二是刷了之后没有继续续费,排名才会掉了。...[详细]
-
出埃及记 2012年的5月,唐宜青从戛纳电影节完成了李冰冰的封面拍摄,当年那家如日中天的杂志不仅掌握着时尚传媒圈相当重量的话语权,也能够提供那个时代的网络新媒体所无法提供的顶级制作资源。...[详细]
-
(3)对站长来说,我的网站都有机会进行优质展示了,是好事。...[详细]
-
这家由华人小伙谢家华创办的网站,2007年销售额超过8亿美元,占美国鞋类网络市场30亿美元的四分之一。...[详细]
-
Saving WBTC? Can the signature prize pool activities supported by Curve and Synthetix be successful?
在坚持诚信的基础上,天搜股份还坚持不懈地深耕技术创新,提升用户体验。...[详细]
-
图六:2016年度农业B2B行业获投轮次分布情况 快消B2B行业 在22起快消B2B获投事件中共涉及19家快消品B2B电商平台,其主营业务主要是围绕社区、便利店、终端零售店开展...[详细]